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SUMMARY 

The flow field through tubes with multiple axisymmetric constrictions in tubes was studied numerically. Two 
practical problem cases were considered and the numerical scheme was developed for both. In the first case there 
are one, two, three and four constrictions in the tube. The effects of the number of constrictions on wall shear 
stress, pressure drop, streamline, vorticity and velocity distributions as the flow passes through the tube were 
studied and the development of the periodicity characteristics was investigated. In the second case there were 
multiple constrictions in the tube equidistant from each other. For this case the governing equations were 
reformulated for a module at a sufficient distance downstream from the inlet where the entrance region effects 
could be ignored and flow field is assumed to repeat itself. The flow field solutions were obtained in this region. 
The governing equations were formulated in curvilinear co-ordinates and a finite volume discretization 
procedure was used to solve the problem. The computations were carried out over a range of Reynolds numbers 
between 50 to 250 for constrictions with 75 percent area reduction. The method is validated by comparing some 
of the solutions with experimental results. 
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INTRODUCTION 

The effect of axisymmetric constrictions in tubes has many important applications especially in 
biofluids. The constriction of an artery commonly known as a stenosis is one of the most frequently 
occurring abnormalities in man. The results of a steady flow analysis for this situation is an important 
first step in studying the effects of arterial stenosis on the human body. Studies of the stenotic flow 
fields have been done by numerous investigators. The relevant work is mentioned here. Young and 
Tsai’ conducted a series of steady flow experiments for various hydrodynamic factors such as 
pressure drop, separation and turbulence. Talukder et d2 conducted an experimental study of the 
effects of multiple stenoses on the pressure drop. Ahmed and Giddens3 investigated the velocity field 
in the neighbourhood of axisymmetric constrictions. Experimental studies of stenotic blood flow have 
been augmented by theoretical models (e.g. Lee and Fung? Deshpande et al.,’ van Dreumel and 
Kuiken6). Lee7 gave a numerical analysis of fluid flow through tubes with double constrictions. 
Angiograms taken from patients having coronary symptoms have shown the presence of several 
stenoses on the same artery. Configurations of tubes with multiple constrictions are also used in heat 
exchangers to enhance heat transfer. An example for such a system is a reflux condenser. Sparrow 
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and Prata' obtained a numerical solution for the heat transfer problem in the fully developed regime 
in a duct of periodically varying cross-section. They solved the problem for a module in the fully 
developed regime in polar co-ordinates by blocking the flow passage in such a manner that it 
approximates the geometry of a converging diverging duct and used the periodicity boundary 
conditions to solve the problem. Other related papers involving a similar approach include Prata and 
Sparrow' and Patankar et ~ 1 . ' '  

A review of the literature indicates that the average Reynolds number for the human carotid artery 
and the monkey aorta is usually less than 400 whereas for the human and dog aortas the averaged 
Reynolds number is less than 2000 (Ahmed and Giddens3). Talukder et u Z . ~  varied the Reynolds 
number between 30 and 280 in their experimental in vitro and in vivo studies. They selected this 
range to study the flow conditions encountered clinically. Their in vivo studies were conducted using 
the iliac and femoral arteries of an anaesthetized dog. These studies indicate that laminar flow studies 
are relevant for a number of the arteries in the human body. Accordingly, the numerical investigation 
presented here is restricted to steady laminar flow through a rigid tube which has one or more 
localized axisymmetric constrictions. For those cases where higher Reynolds number flows occur the 
question arises whether the flow is entirely turbulent and whether standard turbulence models can be 
used. The present work is conducted as a first step towards analysis of those cases. 

The problem was solved by transforming the Navier-Stokes equation from polar co-ordinates into 
curvilinear co-ordinates and using a finite volume numerical method. Most of the earlier numerical 
work on these type of problems has been done using cylindrical polar co-ordinates or using a problem 
specific co-ordinate transformation. To our knowledge no numerical investigation has been attempted 
to study the flow characteristics for a single module in the fully developed region of a tube with 
multiple constrictions using curvilinear co-ordinates along with periodic boundary conditions. The 
use of a curvilinear co-ordinate system has many advantages. Application of cylindrical polar co- 
ordinates to curved surfaces usually involves interpolation between the grid points that are not 
coincident with the boundaries which may adversely affect the accuracy of the solution. The shape 
and the number of constrictions can also be varied without any changes in the numerical method with 
a curvilinear coordinate transformation. 

The main objective of this paper is to provide a detailed analysis on the dynamics of the flow over a 
range of Reynolds numbers with constrictions of 75 per cent area reduction, and to observe the 
development of the periodicity characteristics of the flow. Constrictions of 75 per cent reduction in 
the flow area are selected as it is the commonly accepted critical value of stenosk2 The concept of 
critical stenosis is the degree of vessel occlusion beyond which there are abrupt changes in the flow 
properties. The secondary objective is to solve the problem with multiple constrictions in a tube by 
concentrating on a module at a sufficient distance downstream from the inlet where the flow is filly 
developed as the flow field becomes periodic and to find the relationship between the pressure drop 
across the module and the Reynolds number. 

PROBLEM FORMULATION 

The equations governing the flow in cylindrical co-ordinates are presented in the primitive variable 
form. Constant fluid properties are assumed and the flow is considered axisymmetric and laminar. 
The problems formulated are classified into two cases. The first case deals with tubes with up to four 
constrictions located equidistant from each other. Case 2 deals with the situation where there are a 
number of constrictions in the tube equidistant from each other and the problem is formulated for one 
module in the system. Primitive variable form of the governing equation is selected because it will be 
easier to extend the models to three dimensions and to turbulence. 
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Case I .  (Tube with multiple constrictions) 

In this case there are one, two, three and four constrictions in the tube. The geometry of the model 
with four constrictions is shown in Figure 1. The pertinent geometrical characteristics of the models 
tested are summarized in Table I. The geometry of models M1, M2 and M3 are essentially the same 
as shown in Figure 1 except that model MI has only the first constriction, model M2 has the first and 
second constrictions and model M3 has the first three constrictions. The equation used to generate the 
geometry of the model is of the following form 

n R = R , , + x A e x p  - 1 
i= 1 ( 2(0.25S)* 

where R is the radius of the tube at any location, di is the distance to the centre of each of the 
constrictions from the inlet of the tube and n is the total number of constrictions. The constrictions are 
located sufficiently apart from each other such that the shape of one of the constrictions have 
practically no influence on shape of the other constrictions. 

The flow field solutions were obtained for all the models. The non-dimensional variables are 
defined as 

u = u* /V ,  v = v* /V ,  x = x*/DO, r = r*/D,,, 

P =p*IpV2 ,  Re = pVD,/pL, 

where the average velocity is taken as the reference velocity, V. 

given as 
The governing equations are the mass conservation and the u and v momentum equations which are 

Mass conservation equation 

1 
I 

-- 
! ---_ -,, ,,,,,,,,,,,,, 

I I 

I 
L s - 1  I 

I 
I 
I I I L I 

Figure 1. Geometry of the tube with constrictions (Case 1) 
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Table I. Geometries of the models 

Area No. of 
Model reduction constrictions Re dl d2 d3 d4 

Case 1: M1 75% 1 50-250 3 - - - 
- M2 75% 2 50-250 3 9 

M3 7 5% 3 50-250 3 9 15 - 

M4 75% 4 5&250 3 9 15 21 

- 

Momentum conservation equations 

The boundary conditions on the symmetry lines are 

On the solid bounding walls, the no slip boundary condition is used. 

u = O ,  v = O  at r = R .  

At the inlet the flow is assumed to be fully developed and laminar, therefore, 

u = 2(1 -43 ) ,  v = 0, 

and at the exit, zero gradient boundary conditions are used. 
au av -=o ,  - = 0 .  
ax ax (9) 

Case 2. Modular approach 

The governing equations for the modular approach were formulated under the assumption that the 
fluid flow in a tube with a periodically varying cross section attains a fully developed regime, in the 
sense that the velocity field repeats itself at corresponding axial stations in successive cycles. Hence 
the governing equations for the fluid flow could be developed for a single isolated module without 
dealing with the entrance region problem. The geometry of such a module is shown in Figure 2. The 
periodic behaviour of velocity components is expressed as 

u(x, r )  = u(x + 1, r),  v(x, r )  = v(x + 1, r) ,  (10) 
where x is any arbitrary location in the fully developed region and A is length of the module (distance 
between the two constrictions). The cross-sectional pressure distributions at x and x + 1 are identical 
in shape, but the pressure level is lower in the downstream station. It then follows that 

p(x, r )  -p(x + 1, r )  =p(x + 1, r)  -p(x + 2 4  r )  = . . . . (1 1) 
Defining the pressure drop across a module of length 1 as 
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Figure 2. Geometry of the module 

where K is a constant. This pressure field at any location (x, r) could be subdivided into two 
components 

p(x, r)  = -fi +P(x ,  r ) ,  (13) 

where j ( x ,  r )  is the periodic component the value of which is repetitive over successive modules and 
K is an assignable parameter, which is related to the average flow rate and Reynold's number. The 
periodic condition is expressed as 

j ( x ,  r )  = P(x + 1, r). (14) 

The governing equations retain the same form as in Case 1, however, with the following 
modifications. The reference velocity, V =  p/ (pDo) ,  is used and the pressure gradient terms that 
appear in the momentum equations are modified using equations (13) and (14). The boundary 
conditions at the wall and symmetry planes are the same as Case 1. At the inlet and exit, the 
periodicity conditions (Equations (1 0) and (1 4)) are used and the value for K is assigned 

Transformation of basic equations 

The tube, with constrictions, is mapped into a rectangular domain. The new co-ordinate system is 
defined as 5 = 5(x, r)  and q = q(x, r). The transformed computational domain is shown in Figure 3. 
The partial derivatives of any function f can be transformed as 

where J is the Jacobian of the transformation: 

1 
J = xcrq - x r - 

- r x v l ,  - at, .  
The governing equations, (3), (4) and (5 ) ,  can be expressed as 

(17) 
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Figure 3.  Computational domain 

where 4 = 1, u or v for the mass conservation and x-component and r-component of momentum 
equations respectively. 9 is the source term which is zero for the mass conservation equation. 
Employing the procedure of transformation as given by equation (1 6) on equation (1 S), the governing 
equations are transformed into the (4, yl) co-ordinate system. The governing equation in the 
transformed coordinate system takes the following form 

The terms containing derivatives with respect to the original independent variables in 9 should also 
be transformed in terms of new independent variables. Hence for the x and r momentum conservation 
equations 

s , = -  

For Case 2 ,  S, will have an additional term K and p is replaced with p. 

NUMERICAL METHOD OF SOLUTION 

The present numerical scheme is similar to the SIMPLE method developed by Patankar and 
Spalding. ' ' Rhie and Chow" used a curvilinear co-ordinate system which removed the geometric 
limitations of the SIMPLE method. The present method is a modified version of this as it involves 
transforming the governing equations from polar co-ordinates to curvilinear co-ordinates and adapts 
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the numerical scheme for this problem. A staggered grid arrangement is used for the solution and is 
shown in Figure 4. Integrating equation (19) over the control volume, the approximation of the 
integral conservation equation is written as 

where GI and G2 are directly related to the contravariant velocity components and 

r r 

rP P 
G, = u r  - - v x  ,,, , G2 = 7 vxt, - urt,, ‘I, 

A relation between the dependent variable ‘4’ at point ‘P’ and its neighbouring points, E, W, N, S can 
then be obtained, i.e. 

where the coefficients such as AE involves convection and diffusion. The last two terms in the 
equation originated from the cross products of the diffusion terms and can be included in the source 
terms for numerical computation. Representing the source term as S it can be linearized as 
S=S, - S,4,. The terms corresponding to Sp are combined with A ,  while performing the 
calculations. 

W 

Figure 4. Staggered grid arrangement 
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The coefficients are calculated according to the ‘power law scheme’ which provides an accurate 
representation of the exact solution when applied to a one-dimensional problem and performs 
reasonably well in problems of higher dimensions. The power law scheme was found to be very 
robust and did not pose difficulties during convergence of the code. The scheme was also thoroughly 
checked in the model validation process to ensure that the results were reasonable and accurate. The 
reason why the power law scheme was selected although higher-order schemes like QUICK are more 
accurate is that they are prone to numerical instabilities and code convergence especially in problems 
with complicated domains such as the one studied and they are known to produce undershoots and 
overshoots. 

The coefficients are expressed as 

A ,  = D, max(0, 1 - 0.1 IP,15) + max(-F,, 0), 

A ,  = D, max(0, 1 - 0.1 IPw15) + max(F,, 0), 

A ,  = D,max(O, 1 - 0.11P,J5) + max(-F,, 0), 

A ,  = D, max(0, 1 - 0.1 IP,1’) + max(F,, 0), 
F 

P = - 
D ’  Ap 1 A ,  + A ,  + A,  + A s  + S,JA(Av, 

where 

The quantities such as G , ,  and D, are obtained by linear interpolation on the physical plane and the 
pressure correction terms are derived in a manner similar to the SIMPLE method. 

The pressure correction equation is derived in a manner similar to the SIMPLE method. The 
correction equations for GI and G2 are obtained by using the velocity and pressure corrections and 
equation (22) and neglecting the terms corresponding to p ;  in the equation for GI and those 
corresponding to p i  in the equation for G2. They are 

GI = GT + B p i ,  G2 = GF + CpX, (27) 
- - 

where B = Bur,,, - (r/rp)Bwxqp and C = (r /rp)C”Xtp - Curgp. The pressure correction equation can 
be obtained by substituting equation (27) into the mass conservation equation (3). 

The pressure correction equation takes the form 

(GTAv>e - (GTAv), + (G2*Wq - (G2*Ww+ 

(‘P;Av)~ - (‘P;AV), + t‘pbAt)n - ( C P ~ A O ,  = 0 
(28) 

A relationship for the variable p’ at point P and its neighbouring points, E, W, N, S can be obtained 
and given as 

(29) Ap ppp ’ -AP - & +ALP& + A V N  + A W s  + mp, 
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where 

The solution procedure is the same as the SIMPLE method. For Case 2 a periodic tridiagonal solver 
was used due to the periodicity boundary conditions. 

Grid dependency tests were carried out using grid sizes of 150 x 15, 200 x 20, 250 x 25 and 
300 x 30 for Case 1. Grid sizes of 250 x 25 and 300 x 30 yielded similar results indicating that the 
solution has become grid independent and a grid size of 300 x 30 was selected for the study. 
Similarly for Case 2, grid dependency tests were carried out using grid sizes of 20 x 15, 30 x 20, 
35 x 25 and 40 x 30. A grid size of 40 x 30 was selected as the results had become grid independent 
for this size. 

Modelling the problem in curvilinear co-ordinates enables a wide variety of parameters to be 
varied. For this study, the fluid selected was water. For Case 2 the length of the module was taken to 
be a non-dimensional value of 6 corresponding to the distance between the constrictions in Case 1, 
while all the other parameters remained the same as in Case 1. 

MODEL VALIDATION 

The model was compared with several known experimental results before applying it to the problem 
of interest. The amplitude of the constrictions in the numerical model was made negligible and the 
friction factors were compared with pipe flow results. This comparison is shown in Figure 5. Young 
and Tsai' conducted steady flow experiments and computed pressure drop measurements across 
single constriction for various models of stenosis. The fluid used was water. The unconstricted 
diameter of the tube was 0.744 inches. Two test cases were selected for comparison. One had an 89 
per cent constriction and a spread of the constriction, S, four times the tube diameter and the other 
with 89 per cent constriction and the spread of the constriction was twice the tube diameter. The 
spread of the constriction is shown in Figure 1. The pressure taps were located 6 in either side of the 
constriction. The results of these comparisons with the present model are shown in Figure 6 .  

Velocity measurements in a tube with a single constriction were performed by Ahmed and 
Giddens3 using a Laser Doppler Anemometer. The tube internal diameter was 2 in and the spread of 
the constriction was twice the tubes internal diameter. The fluid used had a kinematic viscosity of 
0.12 stokes. The measurements were taken in tubes with 25 per cent and 75 per cent area reduction. A 
comparison is made with the present results for a Reynolds number of 500 at the distances of z 
equalling 0 and 2.5, where z is the distance from the centre of the constriction in Figure 7. For the 75 
per cent constriction, the experiments indicated that the flow field showed an oscillation in the shear 
layer and was beginning to become turbulent which may be the cause of discrepancy in the results. 

The agreement between the current numerical method and the experiments serves to validate the 
method. The next section includes a comparison of the flow solution in a tube having multiple 
constrictions with the solution obtained by assuming periodicity conditions in a module (Case 2). 
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Figure 5.  Comparison of numerical and analytical results for pipe flow 
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Figure 6. Comparison of non-dimensional pressure drop across stenosis 
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Figure 7. Comparison of non-dimensional velocity 

RESULTS AND DISCUSSION 

The characteristics of the flow were investigated for Reynolds numbers of 50- 250 for models having 
one, two, three and four constrictions in the tube (models MI, M2, M3 and M4 in Case 1). The spread 
of the constriction (S) was taken to be twice the tube diameter. Other pertinent geometric 
characteristics of the models studied are shown in Table I.  The maximum value of 250 was selected 
for the Reynolds number to ensure that the flow remains laminar. For the modular approach (Case 2) 
a sample model is solved corresponding to a Reynolds number of 200. 

Case I 

Pressure. The pressure flow relationship is one means of obtaining information about the severity 
of a coronary stenosis. For a given Reynolds number the presence of a constriction increases the 
resistance that the flow experiences. The pressure drop across the constrictions for the various models 
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are shown in Figure 8. It can be seen that the pressure drop increases as the number of constrictions 
increases. The non-dimensional pressure drop for each of the models, in a manner similar to 
Poiseuille flow, decreases as the Reynolds number increases. 

The non-dimensional pressure distribution along the tube wall in the axial direction, is also of 
interest. A sample plot is shown in Figure 9 for a tube with four constrictions and for a range of 
Reynolds numbers. There is a rapid fall in the pressure as the occlusion is approached, with pressure 
recovery taking place over a greater length. As the number of constrictions is increased, the 
development of the periodic nature of the flow can be seen. The curves show a similar pressure drop 
and recovery across every constriction even as they are shifted correspondingly downwards. This 
shift is due to the mass flow in the positive x direction. 

Velocity. A sample plot of the variation of centreline velocity, in the axial direction for the range of 
Reynolds numbers is shown in Figure 10 for a tube with four constrictions. It could be seen that the 
maximum centreline velocity occurs slightly downstream of the constriction due the formation of a 
recirculation zone near the wall as a result of flow separation. This effectively reduces the cross- 
sectional area of the flow. The centreline velocity is seen to take a larger distance to recover its initial 
value as the Reynolds number increases. As the number of constrictions increases, the fluid does not 
have an opportunity to recover to its initial value of the velocity before it encounters another 
constriction. Only for low Reynolds numbers does the fluid have time to recover. For lower Reynolds 
number, the velocity field is such that it is independent of the other constrictions. 

Wall shear stress, vorticity and streamlines. The wall shear stress, z,, is an important parameter in 
atherosclerosis. Figure 11 shows the nature of the wall shear stress variation in the axial direction for 
the case of a tube with four constrictions. The peak value of z, increases with an increase in Reynolds 
number. The wall shear stress value increases rapidly as the flow approaches the constriction and 
reaches a peak value near the maximum constricted area. Downstream of the constriction z, 
decreases rapidly and reverses sign which indicates a separation in the flow near the wall of the tube. 
An increase in Reynolds number causes the magnitude of the negative z, value to increase 
downstream of the constriction. This is due to an increase in the size of the recirculation region. The 
wall vorticity is very similar to z, as they are directly related in Newtonian flows. The maximum 
value of wall shear generated by the first constriction is always greater than the maximum value of 

Figure 8. Non-dimensional pressure drop across the constrictions 
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Figure 9. Non-dimensional pressure distribution along the wall 

wall shear generated by the second constriction. This is because the recirculation eddy formed 
downstream of the first constriction has a diminishing effect on the vortices generated by the main 
stream near the second constriction area. However, an increase in the number of constrictions causes 
a tendency for the periodic nature of the flow to develop and hence the wall shear stress to behave 
similarly for the other constrictions. The peak value of wall shear stress which is slightly higher in the 
vicinity of the last constriction may be attributed to the presence of no other constrictions 
downstream. 

The contours of vorticity and streamlines are shown for a Reynolds number of 200 for all the 
models in Figures 12 and 13. There is a recirculation eddy downstream of each constriction. The 
recirculating eddies divide the flow into two regimes one of which is the recirculating region, and the 
other is the main flow field carrying the bulk of the flow near the centre of the tube. 

Periodic nature of theflow. The development of the periodic nature of the flow were studied by 
simulating the flow passing through a tube with seven constrictions. The results were compared for a 
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Figure 10. Non-dimensional centreline velocity distribution 
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Figure 1 1. Non-dimensional wall shear stress distribution 

range of Reynolds numbers between 50 to 250. As the Reynolds number is increased the flow is 
expected to reach its fully developed state after a larger number of constrictions. 

The results were shown by comparing the wall shear stress profiles between the constrictions by 
plotting them on top of one another. The space between the constriction is referred to as a module. 
For example ‘module 1’ is between constriction 1 and 2. The profiles are shown in Figure 14. The 
development of the periodic nature of the flow could be clearly seen from the results. The flow pattern 
repeats itself after the second module for lower Reynolds numbers and after the third module for 
higher Reynolds numbers. An approximate expression for the periodic development length for a 
laminar flow could be obtained for a problem having a similar geometry and inlet conditions as 
studied in this work, i.e. 

where the function [ ] is the greatest integer function and n, refers to the number of modules and 1, is 
the entrance length. 

Case 2 

The previous results indicate the development of periodic characteristics of the flow as the number of 
similar constrictions increases in the streamwise direction. The flow field under such conditions can 
be solved by isolating the problem in a single module corresponding to the fully developed region in 
the duct. For this problem periodic boundary conditions must be applied at the inlet and outlet of the 
module. The pressure drop across the module, K ,  is an assignable parameter which corresponds to a 
particular value of the Reynolds number. The value of the Reynolds number corresponding to the 
unconstricted tube diameter could only be found only after the model is solved by performing a 
numerical integration of the following form at any axial location in the module where the diameter is 
Do (unconstricted tube diameter). 

Re,,, = - rSD0 u(r)2nrdr, 
v m l  0 
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Figure 12. Streamline profiles 

where u(v) is the velocity at r, for this particular axial location. The model was solved for various 
values of K and the corresponding Reynolds numbers were obtained using equation (32). These 
results are shown in Figure 15. The model validated by comparing the results of the centreline 
velocity profile and wall shear stress with module 4 (between third and fourth constriction) in the tube 
having seven constrictions for a Reynolds number of 200. The results of the comparison are shown in 
Figures 16 and 17 which indicates the model performs reasonably well. Sample plots of 
streamfunction and vorticity are also shown for a Reynolds number of 200 in Figures 18 and 19. 
The results are similar to those discussed in Case 1. 
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Figure 13. Vorticity contours 

CONCLUSIONS 

The flow field in the neighbourho d of multiple axisymmetric cons rictions were investigated for a 
range of Reynolds numbers between 50 to 250. Constrictions with 75 per cent reduction in the flow 
area were used for the present study. The problem was formulated in curvilinear co-ordinates due to 
the flexibility that the approach provides regarding the shape and the number of constrictions in the 
pipe. A detailed description of the conversion of governing equation from cylindrical co-ordinates to 
curvilinear co-ordinates was provided along with the numerical scheme. The effect that number of 
constrictions had on the flow characteristics such as pressure drop and wall shear stress were studied 
in detail. The development of the periodicity characteristics of the flow were observed and an 
approximate expression for the development region required to achieve the periodically fully 
developed state was shown. This expression is valid only for problems of similar geometry and for 
Reynolds number below 250 as the flow remains laminar in this regime. The presence of the periodic 
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Figure 14. Comparison of skin friction coefficient across the modules 
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Figure 15. Non-dimensional pressure drop across the module versus Reynolds number 
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Figure 16. Comparison of skin friction coefficients (Case 1 versus Case 2)  
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Figure 17. Comparison of non-dimensional centreline velocity (Case 1 versus Case 2) 
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(b) Cam 2 
Figure 18. Vorticity contours (Case 2) 

(b) Caw 2 
Figure 19. Streamline profiles (Case 2) 

nature of the flow indicated that the flow characteristics could be provided in the periodically fully 
developed region by solving the problem for one isolated module in that regime. The governing 
equation in curvilinear co-ordinates and the numerical scheme were developed for the modular 
approach using periodicity boundary conditions and the pressure drop across the module, K, as an 
assignable parameter. The Reynolds number for the flow corresponding to the unconstricted tube 
diameter was found for various values of K .  A similar approach could be used in providing flow field 
solutions in some heat transfer systems such as a reflux condenser which has a geometry similar to the 
problem solved. The computational results can be an essential first step in studying blood flow in the 
presence of stenosis where the pressure drop across the stenosis and the wall shear stresses are of 
considerable importance. However, the present approach should be extended to include unsteady 
terms and wall motions. This would provide a significant improvement over the present model as the 
pulsatile nature of the flow and the instabilities caused by it could be investigated. 
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APPENDIX NOMENCLATURE 

A height of the constriction 
A E ,  Aw, AN, As,  AP 
D diffusion conductance 
DO 
dl ,  d2, d3, d4 
F 
G1, G2 

coefficients in the general finite volume equations 

unconstricted diameter of the tube 
distances of the first, second, third and fourth constrictions from the inlet plane 
flow rate through a control volume face 
convective terms normal to gnd cell boundaries 
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L 
1, 
nm 
P 
P 

r*, x* 
r, x 
R 
RO 
Re 
S 
P 
V 
u*, v* 
u, 21 

P* 

z 

length of the tube 
entrance length for a periodic fully developed flow 
number of modules 
Peclet number 
non-dimensionalized pressure 
pressure 
radial and axial co-ordinates 
non-dimensional radial and axial co-ordinates 
radius of the tube 
unconstricted radius of the tube 
Reynold’s number ( = pVDo/p) 
spread of the constriction 
average value of the of the source term over the control volume 
reference velocity 
x and r components of velocities 
x and r components of non-dimensional velocities 
non-dimensional distance from the centre of the constriction 
co-ordinate transformation parameters 
pressure drop across a module 
length of the module 
cell boundary sizes in 5 and 1 directions in the transformed plane 
laminar viscosity 
kinematic viscosity 
non-dimensional curvilinear co-ordinates 
density 
shear stress 
wall shear stress 
general dependent variable 

grid points (east, west, north, south) 
control volume faces (east, west, north, south) 
central grid point under consideration 
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